The magnetosphere of Earth is a region in space whose shape is determined by the extent of Earth's internal magnetic field, the solar wind plasma, and the interplanetary magnetic field (IMF). In the magnetosphere, a mix of free ions and electrons from both the solar wind and the Earth's ionosphere is confined by electromagnetic forces that are much stronger than gravity and collisions.
In spite of its name, the magnetosphere is distinctly non-spherical. All known planetary magnetospheres in the solar system possess more of an oval tear-drop shape due to the effects of the solar wind.
On the side facing the Sun, the distance to its boundary (which varies with solar wind intensity) is about 70,000 km (10-12 Earth radii or RE, where 1 RE=6371 km; unless otherwise noted, all distances here are from the Earth's center). The boundary of the magnetosphere ("magnetopause") is roughly bullet shaped, about 15 RE abreast of Earth and on the night side (in the "magnetotail" or "geotail") approaching a cylinder with a radius 20-25 RE. The tail region stretches well past 200 RE, and the way it ends is not well-known.
In spite of its name, the magnetosphere is distinctly non-spherical. All known planetary magnetospheres in the solar system possess more of an oval tear-drop shape due to the effects of the solar wind.
On the side facing the Sun, the distance to its boundary (which varies with solar wind intensity) is about 70,000 km (10-12 Earth radii or RE, where 1 RE=6371 km; unless otherwise noted, all distances here are from the Earth's center). The boundary of the magnetosphere ("magnetopause") is roughly bullet shaped, about 15 RE abreast of Earth and on the night side (in the "magnetotail" or "geotail") approaching a cylinder with a radius 20-25 RE. The tail region stretches well past 200 RE, and the way it ends is not well-known.
Nenhum comentário:
Postar um comentário